Numerical solution of stochastic SIR model via split – step forward Milstein method
نویسندگان
چکیده
The SIR infections disease model is an important biologic model. In this paper, the split-step forward Milstein method, is used for solving numerically stochastic SIR model. The stability of this method is better than the Milsteins methods.
منابع مشابه
Split-step Forward Milstein Method for Stochastic Differential Equations
In this paper, we consider the problem of computing numerical solutions for stochastic differential equations (SDEs) of Itô form. A fully explicit method, the split-step forward Milstein (SSFM) method, is constructed for solving SDEs. It is proved that the SSFM method is convergent with strong order γ = 1 in the mean-square sense. The analysis of stability shows that the mean-square stability p...
متن کاملStochastic C-Stability and B-Consistency of Explicit and Implicit Milstein-Type Schemes
Abstract. This paper focuses on two variants of the Milstein scheme, namely the split-step backward Milstein method and a newly proposed projected Milstein scheme, applied to stochastic differential equations which satisfy a global monotonicity condition. In particular, our assumptions include equations with super-linearly growing drift and diffusion coefficient functions and we show that both ...
متن کاملNumerical solution of second-order stochastic differential equations with Gaussian random parameters
In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...
متن کاملOn the split-step method for the solution of nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative
The aim of this paper is to extend the split-step idea for the solution of fractional partial differential equations. We consider the multidimensional nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative and propose an efficient numerical algorithm to obtain it's approximate solutions. To this end, we first discretize the Riesz fractional derivative then apply the Crank-...
متن کاملMeasure Order of Convergence without an Exact Solution, Euler Vs Milstein Scheme
The purpose of this paper is to measure the strong and weak order of convergence of both the Euler and Milstein schemes using a stochastic volatility model and an N−dimensional Exponential Brownian Motion Process (EBM). An exact solution is normally required to calculate the order of convergence, however there are none available for this volatility process. We propose a method to solve this pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016